Search results for "force field"

showing 10 items of 55 documents

A QM/MM Approach Using the AMOEBA Polarizable Embedding: From Ground State Energies to Electronic Excitations

2016

International audience; A fully polarizable implementation of the hybrid Quantum Mechanics/Molecular Mechanics approach is presented, where the classical environment is described through the AMOEBA polarizable force field. A variational formalism, offering a self-consistent 1 relaxation of both the MM induced dipoles and the QM electronic density is used for ground state energies and extended to electronic excitations in the framework of Time-Dependent Density Functional Theory combined with a state specific response of the classical part. An application to the calculation of the solvatochromism of the pyridinium N-phenolate betaine dye used to define the solvent ET30 scale is presented. Th…

010304 chemical physicsChemistryPolarizable force fieldSolvatochromismQuantum Chemistry010402 general chemistryElementary chargeQM/MM01 natural sciences0104 chemical sciencesComputer Science Applications[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistryQM/MMQM/MM; Polarisable embedding; Physical and Theoretical ChemistryPolarizabilityQuantum mechanics0103 physical sciencesPolarisable embeddingDensity functional theorypolarizable force field AMOEBAPhysical and Theoretical ChemistryGround stateExcitationElectronic densityJournal of Chemical Theory and Computation
researchProduct

Ten Facets, One Force Field: The GAL19 Force Field for Water–Noble Metal Interfaces

2020

International audience; Understanding the structure of the water/metal interfaces plays an important role in many areas ranging from surface chemistry to environmental processes. The size, required phase-space sampling, and the slow diffusion of molecules at the water/metal interfaces motivate the development of accurate force fields. We develop and parametrize GAL19, a novel force field, to describe the interaction of water with two facets (111 and 100) of five metals (Pt, Pd, Au, Ag, Cu). To increase transferability compared to its predecessor GAL17, the water–metal interaction is described as a sum of pairwise terms. The interaction energy has three contributions: (i) physisorption is de…

010304 chemical physicsengineering.material01 natural sciencesForce field (chemistry)Computer Science ApplicationsMetal[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistryChemical physicsvisual_art0103 physical sciencesvisual_art.visual_art_mediumengineeringNoble metalPhysical and Theoretical Chemistry
researchProduct

Force Field for Water over Pt(111): Development, Assessment, and Comparison

2018

Metal/water interfaces are key in many natural and industrial processes, such as corrosion, atmospheric, or environmental chemistry. Even today, the only practical approach to simulate large interfaces between a metal and water is to perform force-field simulations. In this work, we propose a novel force field, GAL17, to describe the interaction of water and a Pt(111) surface. GAL17 builds on three terms: (i) a standard Lennard-Jones potential for the bonding interaction between the surface and water, (ii) a Gaussian term to improve the surface corrugation, and (iii) two terms describing the angular dependence of the interaction energy. The 12 parameters of this force field are fitted again…

10120 Department of ChemistryMaterials scienceComputationGaussianThermodynamics02 engineering and technology010402 general chemistry01 natural sciencesForce field (chemistry)CorrosionMetalComputer Softwaresymbols.namesakeAdsorptionTheoretical and Computational Chemistry540 Chemistry1706 Computer Science ApplicationsPhysical and Theoretical ChemistryComputingMilieux_MISCELLANEOUSChemical PhysicsSolvationInteraction energy021001 nanoscience & nanotechnology0104 chemical sciencesComputer Science Applications[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry13. Climate actionvisual_artvisual_art.visual_art_mediumsymbolsBiochemistry and Cell Biology0210 nano-technology1606 Physical and Theoretical Chemistry
researchProduct

A theoretical study of the 1B2u and 1B1u vibronic bands in benzene

2000

The two lowest bands, 1B2u and 1B1u, of the electronic spectrum of the benzene molecule have been studied theoretically using a new method to compute vibronic excitation energies and intensities. The complete active space (CAS) self-contained field (SCF) method (with six active π-orbitals) was used to compute harmonic force field for the ground state and the 1B2u and 1B1u electronic states. A linear approximation has been used for the transition dipole as a function of the nuclear displacement coordinates. Derivatives of the transition dipole were computed using a variant of the CASSCF state interaction method. Multiconfigurational second-order perturbation theory (CASPT2) was used to obtai…

:QUÍMICA::Química física [UNESCO]General Physics and AstronomyVibronic statesMolecular force constantsPerturbation theoryForce field (chemistry)Ground stateschemistry.chemical_compoundDipolechemistryOrganic compounds ; Vibronic states ; Perturbation theory ; SCF calculations ; Ground states ; Molecular force constantsOrganic compoundsUNESCO::QUÍMICA::Química físicaSCF calculationsMoleculeLinear approximationComplete active spacePhysical and Theoretical ChemistryAtomic physicsBenzeneGround stateExcitation
researchProduct

Liquid structure of a water-in-salt electrolyte with a remarkably asymmetric anion

2021

Water-in-salt systems, i.e., super-concentrated aqueous electrolytes, such as lithium bis(trifluoromethanesulfonyl)imide (21 mol/kgwater), have been recently discovered to exhibit unexpectedly large electrochemical windows and high lithium transference numbers, thus paving the way to safe and sustainable charge storage devices. The peculiar transport features in these electrolytes are influenced by their intrinsically nanoseparated morphology, stemming from the anion hydrophobic nature and manifesting as nanosegregation between anions and water domains. The underlying mechanism behind this structure-dynamics correlation is, however, still a matter of strong debate. Here, we enhance the apol…

AnionsDYNAMICSLI+MOLECULAR-FORCE FIELDLOCAL-STRUCTUREWaterLithiumMolecular Dynamics Simulationmolecular-force field; particle meshewald; local-structure; ionic liquids; dynamics; viscosity; conductivity dependence; LI+PARTICLE MESH EWALElectrolytesIONIC LIQUIDSDEPENDENCECONDUCTIVITYVISCOSITY
researchProduct

A new force field including charge directionality for TMAO in aqueous solution

2016

We propose a new force field for trimethylamine N-oxide (TMAO), which is designed to reproduce the long-lived and highly directional hydrogen bond between the TMAO oxygen (OTMAO) atom and surrounding water molecules. Based on the data obtained by ab initio molecular dynamics simulations, we introduce three dummy sites around OTMAO to mimic the OTMAO lone pairs and we migrate the negative charge on the OTMAO to the dummy sites. The force field model developed here improves both structural and dynamical properties of aqueous TMAO solutions. Moreover, it reproduces the experimentally observed dependence of viscosity upon increasing TMAO concentration quantitatively. The simple procedure of the…

Aqueous solution010304 chemical physicsChemistryHydrogen bondGeneral Physics and Astronomy010402 general chemistry01 natural sciencesForce field (chemistry)0104 chemical sciencesMolecular dynamicsChemical physicsComputational chemistryAb initio quantum chemistry methods0103 physical sciencesMoleculeDirectionalityPhysical and Theoretical ChemistryLone pairThe Journal of Chemical Physics
researchProduct

Ab Initio Liquid Water Dynamics in Aqueous TMAO Solution

2015

Ab initio molecular dynamics (AIMD) simulations in trimethylamine N-oxide (TMAO)-D2O solution are employed to elucidate the effects of TMAO on the reorientational dynamics of D2O molecules. By decomposing the O-D groups of the D2O molecules into specific subensembles, we reveal that water reorientational dynamics are retarded considerably in the vicinity of the hydrophilic TMAO oxygen (O(TMAO)) atom, due to the O-D···O(TMAO) hydrogen-bond. We find that this reorientational motion is governed by two distinct mechanisms: The O-D group rotates (1) after breaking the O-D···O(TMAO) hydrogen-bond, or (2) together with the TMAO molecule while keeping this hydrogen-bond intact. While the orientatio…

Aqueous solutionLiquid waterAb initioTrimethylamineRadial distributionForce field (chemistry)Surfaces Coatings and FilmsAb initio molecular dynamicschemistry.chemical_compoundchemistryComputational chemistryChemical physicsMaterials ChemistryMoleculePhysical and Theoretical ChemistryThe Journal of Physical Chemistry B
researchProduct

Revised Atomistic Models of the Crystal Structure of C–S–H with high C/S Ratio

2016

Abstract The atomic structure of calcium-silicate-hydrate (C1.67–S–H x ) has been studied. Atomistic C–S–H models suggested in our previous study have been revised in order to perform a direct comparison of energetic stability of the different structures. An extensive set of periodic structures of C–S–H with variation of water content was created, and then optimized using molecular dynamics with reactive force field ReaxFF and quantum chemical semiempirical method PM6. All models show organization of water molecules inside the structure of C–S–H. The new geometries of C–S–H, reported in this paper, show lower relative energy with respect to the geometries from the original definition of C–S…

Chemistry0211 other engineering and technologiesStructure (category theory)ThermodynamicsTobermorite02 engineering and technologyCrystal structure021001 nanoscience & nanotechnologyC-S-H Structure ; Atomistic Simulation ; ReaxFF Force Field ; Semiempirical Quantum ChemistryStability (probability)Physical ChemistryInorganic ChemistryMolecular dynamics021105 building & constructionTheoretical chemistryPhysical chemistryMoleculePhysical and Theoretical ChemistryReaxFF0210 nano-technologyTheoretical Chemistry
researchProduct

Molecular Dynamics Simulations of SFG Librational Modes Spectra of Water at the Water–Air Interface

2016

At the water–air interface, the hydrogen-bond network of water molecules is interrupted, and accordingly, the structure and dynamics of the interfacial water molecules are altered considerably compared with the bulk. Such interfacial water molecules have been studied by surface-specific vibrational sum-frequency generation (SFG) spectroscopy probing high-frequency O–H stretch and H–O–H bending modes. In contrast, the low-frequency librational mode has been much less studied with SFG. Because this mode is sensitive to the hydrogen-bond connectivity, understanding the librational mode of the interfacial water is crucial for unveiling a microscopic view of the interfacial water. Here, we compu…

ChemistryAnalytical chemistry02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesSpectral lineForce field (chemistry)0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsMolecular dynamicsDipoleGeneral EnergyPolarizabilityChemical physicsMoleculePhysics::Chemical PhysicsPhysical and Theoretical Chemistry0210 nano-technologySpectroscopyPhysics::Atmospheric and Oceanic PhysicsThe Journal of Physical Chemistry C
researchProduct

Does force-field adaptation induce after-effects on space representation?

2017

AbstractPrism adaptation is a well-known model to study sensorimotor adaptive processes. It has been shown that following prism exposure, after-effects are not only restricted to the sensorimotor level but extend as well into spatial cognition. The main purpose of the present study was to investigate in healthy individuals whether expansion to spatial cognition is restricted to adaptive processes peculiar to prism adaptation or whether it occurs as well following other forms of adaptive process such as adaptation to a novel dynamic environment during pointing movements. Representational after-effects were assessed by the perceptual line bisection task before and after adaptation to a leftwa…

Computer scienceLate phaseBisectionHealthy individualsPerceptionmedia_common.quotation_subjectSpatial cognitionPrism adaptationForce field (chemistry)media_commonCognitive psychology
researchProduct