Search results for "force field"
showing 10 items of 55 documents
A QM/MM Approach Using the AMOEBA Polarizable Embedding: From Ground State Energies to Electronic Excitations
2016
International audience; A fully polarizable implementation of the hybrid Quantum Mechanics/Molecular Mechanics approach is presented, where the classical environment is described through the AMOEBA polarizable force field. A variational formalism, offering a self-consistent 1 relaxation of both the MM induced dipoles and the QM electronic density is used for ground state energies and extended to electronic excitations in the framework of Time-Dependent Density Functional Theory combined with a state specific response of the classical part. An application to the calculation of the solvatochromism of the pyridinium N-phenolate betaine dye used to define the solvent ET30 scale is presented. Th…
Ten Facets, One Force Field: The GAL19 Force Field for Water–Noble Metal Interfaces
2020
International audience; Understanding the structure of the water/metal interfaces plays an important role in many areas ranging from surface chemistry to environmental processes. The size, required phase-space sampling, and the slow diffusion of molecules at the water/metal interfaces motivate the development of accurate force fields. We develop and parametrize GAL19, a novel force field, to describe the interaction of water with two facets (111 and 100) of five metals (Pt, Pd, Au, Ag, Cu). To increase transferability compared to its predecessor GAL17, the water–metal interaction is described as a sum of pairwise terms. The interaction energy has three contributions: (i) physisorption is de…
Force Field for Water over Pt(111): Development, Assessment, and Comparison
2018
Metal/water interfaces are key in many natural and industrial processes, such as corrosion, atmospheric, or environmental chemistry. Even today, the only practical approach to simulate large interfaces between a metal and water is to perform force-field simulations. In this work, we propose a novel force field, GAL17, to describe the interaction of water and a Pt(111) surface. GAL17 builds on three terms: (i) a standard Lennard-Jones potential for the bonding interaction between the surface and water, (ii) a Gaussian term to improve the surface corrugation, and (iii) two terms describing the angular dependence of the interaction energy. The 12 parameters of this force field are fitted again…
A theoretical study of the 1B2u and 1B1u vibronic bands in benzene
2000
The two lowest bands, 1B2u and 1B1u, of the electronic spectrum of the benzene molecule have been studied theoretically using a new method to compute vibronic excitation energies and intensities. The complete active space (CAS) self-contained field (SCF) method (with six active π-orbitals) was used to compute harmonic force field for the ground state and the 1B2u and 1B1u electronic states. A linear approximation has been used for the transition dipole as a function of the nuclear displacement coordinates. Derivatives of the transition dipole were computed using a variant of the CASSCF state interaction method. Multiconfigurational second-order perturbation theory (CASPT2) was used to obtai…
Liquid structure of a water-in-salt electrolyte with a remarkably asymmetric anion
2021
Water-in-salt systems, i.e., super-concentrated aqueous electrolytes, such as lithium bis(trifluoromethanesulfonyl)imide (21 mol/kgwater), have been recently discovered to exhibit unexpectedly large electrochemical windows and high lithium transference numbers, thus paving the way to safe and sustainable charge storage devices. The peculiar transport features in these electrolytes are influenced by their intrinsically nanoseparated morphology, stemming from the anion hydrophobic nature and manifesting as nanosegregation between anions and water domains. The underlying mechanism behind this structure-dynamics correlation is, however, still a matter of strong debate. Here, we enhance the apol…
A new force field including charge directionality for TMAO in aqueous solution
2016
We propose a new force field for trimethylamine N-oxide (TMAO), which is designed to reproduce the long-lived and highly directional hydrogen bond between the TMAO oxygen (OTMAO) atom and surrounding water molecules. Based on the data obtained by ab initio molecular dynamics simulations, we introduce three dummy sites around OTMAO to mimic the OTMAO lone pairs and we migrate the negative charge on the OTMAO to the dummy sites. The force field model developed here improves both structural and dynamical properties of aqueous TMAO solutions. Moreover, it reproduces the experimentally observed dependence of viscosity upon increasing TMAO concentration quantitatively. The simple procedure of the…
Ab Initio Liquid Water Dynamics in Aqueous TMAO Solution
2015
Ab initio molecular dynamics (AIMD) simulations in trimethylamine N-oxide (TMAO)-D2O solution are employed to elucidate the effects of TMAO on the reorientational dynamics of D2O molecules. By decomposing the O-D groups of the D2O molecules into specific subensembles, we reveal that water reorientational dynamics are retarded considerably in the vicinity of the hydrophilic TMAO oxygen (O(TMAO)) atom, due to the O-D···O(TMAO) hydrogen-bond. We find that this reorientational motion is governed by two distinct mechanisms: The O-D group rotates (1) after breaking the O-D···O(TMAO) hydrogen-bond, or (2) together with the TMAO molecule while keeping this hydrogen-bond intact. While the orientatio…
Revised Atomistic Models of the Crystal Structure of C–S–H with high C/S Ratio
2016
Abstract The atomic structure of calcium-silicate-hydrate (C1.67–S–H x ) has been studied. Atomistic C–S–H models suggested in our previous study have been revised in order to perform a direct comparison of energetic stability of the different structures. An extensive set of periodic structures of C–S–H with variation of water content was created, and then optimized using molecular dynamics with reactive force field ReaxFF and quantum chemical semiempirical method PM6. All models show organization of water molecules inside the structure of C–S–H. The new geometries of C–S–H, reported in this paper, show lower relative energy with respect to the geometries from the original definition of C–S…
Molecular Dynamics Simulations of SFG Librational Modes Spectra of Water at the Water–Air Interface
2016
At the water–air interface, the hydrogen-bond network of water molecules is interrupted, and accordingly, the structure and dynamics of the interfacial water molecules are altered considerably compared with the bulk. Such interfacial water molecules have been studied by surface-specific vibrational sum-frequency generation (SFG) spectroscopy probing high-frequency O–H stretch and H–O–H bending modes. In contrast, the low-frequency librational mode has been much less studied with SFG. Because this mode is sensitive to the hydrogen-bond connectivity, understanding the librational mode of the interfacial water is crucial for unveiling a microscopic view of the interfacial water. Here, we compu…
Does force-field adaptation induce after-effects on space representation?
2017
AbstractPrism adaptation is a well-known model to study sensorimotor adaptive processes. It has been shown that following prism exposure, after-effects are not only restricted to the sensorimotor level but extend as well into spatial cognition. The main purpose of the present study was to investigate in healthy individuals whether expansion to spatial cognition is restricted to adaptive processes peculiar to prism adaptation or whether it occurs as well following other forms of adaptive process such as adaptation to a novel dynamic environment during pointing movements. Representational after-effects were assessed by the perceptual line bisection task before and after adaptation to a leftwa…